Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Ecol Evol ; 13(3): e9842, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36911313

RESUMO

Restriction-site-associated DNA sequencing (RADseq) has become an accessible way to obtain genome-wide data in the form of single-nucleotide polymorphisms (SNPs) for phylogenetic inference. Nonetheless, how differences in RADseq methods influence phylogenetic estimation is poorly understood because most comparisons have largely relied on conceptual predictions rather than empirical tests. We examine how differences in ddRAD and 2bRAD data influence phylogenetic estimation in two non-model frog groups. We compare the impact of method choice on phylogenetic information, missing data, and allelic dropout, considering different sequencing depths. Given that researchers must balance input (funding, time) with output (amount and quality of data), we also provide comparisons of laboratory effort, computational time, monetary costs, and the repeatability of library preparation and sequencing. Both 2bRAD and ddRAD methods estimated well-supported trees, even at low sequencing depths, and had comparable amounts of missing data, patterns of allelic dropout, and phylogenetic signal. Compared to ddRAD, 2bRAD produced more repeatable datasets, had simpler laboratory protocols, and had an overall faster bioinformatics assembly. However, many fewer parsimony-informative sites per SNP were obtained from 2bRAD data when using native pipelines, highlighting a need for further investigation into the effects of each pipeline on resulting datasets. Our study underscores the importance of comparing RADseq methods, such as expected results and theoretical performance using empirical datasets, before undertaking costly experiments.

2.
J Hered ; 114(3): 199-206, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-36897956

RESUMO

In most animals, mitochondrial DNA is strictly maternally inherited and non-recombining. One exception to this pattern is called doubly uniparental inheritance (DUI), a phenomenon involving the independent transmission of female and male mitochondrial genomes. DUI is known only from the molluskan class Bivalvia. The phylogenetic distribution of male-transmitted mitochondrial DNA (M mtDNA) in bivalves is consistent with several evolutionary scenarios, including multiple independent gains, losses, and varying degrees of recombination with female-transmitted mitochondrial DNA (F mtDNA). In this study, we use phylogenetic methods to test M mtDNA origination hypotheses and infer the prevalence of mitochondrial recombination in bivalves with DUI. Phylogenetic modeling using site concordance factors supported a single origin of M mtDNA in bivalves coupled with recombination acting over long evolutionary timescales. Ongoing mitochondrial recombination is present in Mytilida and Venerida, which results in a pattern of concerted evolution of F mtDNA and M mtDNA. Mitochondrial recombination could be favored to offset the deleterious effects of asexual inheritance and maintain mitonuclear compatibility across tissues. Cardiida and Unionida have gone without recent recombination, possibly due to an extension of the COX2 gene in male mitochondrial DNA. The loss of recombination could be connected to the role of M mtDNA in sex determination or sexual development. Our results support that recombination events may occur throughout the mitochondrial genomes of DUI species. Future investigations may reveal more complex patterns of inheritance of recombinants, which could explain the retention of signal for a single origination of M mtDNA in protein-coding genes.


Assuntos
Bivalves , Genoma Mitocondrial , Animais , Feminino , Masculino , Filogenia , Mitocôndrias/genética , Bivalves/genética , DNA Mitocondrial/genética , Padrões de Herança , Recombinação Genética
3.
Syst Biol ; 72(2): 357-371, 2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35993885

RESUMO

With limited sampling, geographic variation within a single species can be difficult to distinguish from interspecific variation, confounding our ability to draw accurate species boundaries. We argue that thorough sampling and analysis of contact zones between putative taxa can determine if assortative mating or selection against hybrids exists (supporting the presence of two distinct species), or alternatively if mating is random among genotypes and admixture among adjacent populations is gradual and continuous (supporting geographic variation within a single species). Here, we test two alternative hypotheses for two pairs of named taxa at contact zones within the American milksnake (Lampropeltis triangulum) complex. A prior morphological analysis found areas of gradual intergradation among named taxa, and concluded that the taxa represented geographical races of a single polytypic species. In contrast, a subsequent analysis of gene sequence data, but with limited sampling near the contact zones, hypothesized distinct boundaries between species at the contact zones. At the contact zone between proposed species L. triangulum and Lampropeltis gentilis, we examined a $\sim$700 km-wide transect across the states of Kansas and Missouri, with thorough sampling and reduced-representation genomic-level sequencing, to test the two opposing taxonomic hypotheses. Our transect analyses included examinations of population structure, fixed differences, cline-fitting, and an admixture index analysis. These analyses all supported a gradual and continuous geographic cline across a broad intergrade zone between two geographic forms of L. triangulum, thus providing strong support for a single species in this region (and no support for the recognition of L. gentilis as a distinct species). At a second contact zone between proposed species L. triangulum and Lampropeltis elapsoides (but variously treated as species or subspecies by different researchers) in Kentucky and Tennessee, we re-evaluated morphological data. In this case, the contact zone analysis indicated sympatry and reproductive isolation of the two taxa, and thus strongly supported L. triangulum and L. elapsoides as distinct species. We conclude that detailed studies of contact zones, based on either genetic or morphological data, are essential for distinguishing intraspecific from interspecific variation in the case of widely and continuously distributed taxa. [Contact zones; speciation; species concepts; species delimitation; taxonomy.].


Assuntos
Genética Populacional , Isolamento Reprodutivo , Filogenia , Genótipo , Geografia , Hibridização Genética
4.
Proc Natl Acad Sci U S A ; 119(46): e2212406119, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36346846

RESUMO

Defense against ultraviolet (UV) radiation exposure is essential for survival, especially in high-elevation species. Although some specific genes involved in UV response have been reported, the full view of UV defense mechanisms remains largely unexplored. Herein, we used integrated approaches to analyze UV responses in the highest-elevation frog, Nanorana parkeri. We show less damage and more efficient antioxidant activity in skin of this frog than those of its lower-elevation relatives after UV exposure. We also reveal genes related to UV defense and a corresponding temporal expression pattern in N. parkeri. Genomic and metabolomic analysis along with large-scale transcriptomic profiling revealed a time-dependent coordinated defense mechanism in N. parkeri. We also identified several microRNAs that play important regulatory roles, especially in decreasing the expression levels of cell cycle genes. Moreover, multiple defense genes (i.e., TYR for melanogenesis) exhibit positive selection with function-enhancing substitutions. Thus, both expression shifts and gene mutations contribute to UV adaptation in N. parkeri. Our work demonstrates a genetic framework for evolution of UV defense in a natural environment.


Assuntos
Anuros , Raios Ultravioleta , Animais , Anuros/genética , Pele , Perfilação da Expressão Gênica , Antioxidantes
5.
Proc Natl Acad Sci U S A ; 119(13): e2116342119, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-35286217

RESUMO

SignificanceTo adapt to arboreal lifestyles, treefrogs have evolved a suite of complex traits that support vertical movement and gliding, thus presenting a unique case for studying the genetic basis for traits causally linked to vertical niche expansion. Here, based on two de novo-assembled Asian treefrog genomes, we determined that genes involved in limb development and keratin cytoskeleton likely played a role in the evolution of their climbing systems. Behavioral and morphological evaluation and time-ordered gene coexpression network analysis revealed the developmental patterns and regulatory pathways of the webbed feet used for gliding in Rhacophorus kio.


Assuntos
Locomoção , Árvores , Adaptação Fisiológica/genética , Animais , Anuros , Evolução Biológica , Fenômenos Biomecânicos , Genômica , Humanos , Locomoção/genética
6.
Natl Sci Rev ; 8(9): nwaa263, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34691726

RESUMO

The Himalaya are among the youngest and highest mountains in the world, but the exact timing of their uplift and origins of their biodiversity are still in debate. The Himalayan region is a relatively small area but with exceptional diversity and endemism. One common hypothesis to explain the rich montane diversity is uplift-driven diversification-that orogeny creates conditions favoring rapid in situ speciation of resident lineages. We test this hypothesis in the Himalayan region using amphibians and reptiles, two environmentally sensitive vertebrate groups. In addition, analysis of diversification of the herpetofauna provides an independent source of information to test competing geological hypotheses of Himalayan orogenesis. We conclude that the origins of the Himalayan herpetofauna date to the early Paleocene, but that diversification of most groups was concentrated in the Miocene. There was an increase in both rates and modes of diversification during the early to middle Miocene, together with regional interchange (dispersal) between the Himalaya and adjacent regions. Our analyses support a recently proposed stepwise geological model of Himalayan uplift beginning in the Paleocene, with a subsequent rapid increase of uplifting during the Miocene, finally giving rise to the intensification of the modern South Asian Monsoon.

7.
Mol Phylogenet Evol ; 162: 107194, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33940060

RESUMO

As DNA sequencing technologies and methods for delimiting species with genomic data become more accessible and numerous, researchers have more tools than ever to investigate questions in systematics and phylogeography. However, easy access to sophisticated computational tools is not without its drawbacks. Choosing the right approach for one's question can be challenging when presented with multitudinous options, some of which fail to distinguish between species and intraspecific population structure. Here, we employ a methodology that emphasizes intensive geographic sampling, particularly at contact zones between populations, with a focus on differentiating intraspecific genetic clusters from species in the Pantherophis guttatus complex, a group of North American ratsnakes. Using a mitochondrial marker as well as ddRADseq data, we find evidence of mitonuclear discordance which has contributed to historical confusion about the relationships within this group. Additionally, we identify geographically and genetically structured populations within the species Pantherophis emoryi that are congruent with previously described morphological variation. Importantly, we find that these structured populations within P. emoryi are highly admixed throughout the range of the species and show no evidence of any reproductive isolation. Our data support a revision of the taxonomy of this group, and we recognize two species within the complex and three subspecies within P. emoryi. This study illustrates the importance of thorough sampling of contact zones and consideration of gene flow when delimiting species in widespread complexes containing parapatric lineages.


Assuntos
Núcleo Celular/genética , DNA Mitocondrial/genética , Variação Genética , Genômica , Filogenia , Filogeografia , Serpentes/genética , Animais , Análise de Sequência de DNA
8.
Ecol Evol ; 10(8): 3738-3746, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32313632

RESUMO

Sexually selected traits can be expected to increase in importance when the period of sexual behavior is constrained, such as in seasonally restricted breeders. Anolis lizard male dewlaps are classic examples of multifaceted signaling traits, with demonstrated intraspecific reproductive function reflected in courtship behavior. Fitch and Hillis found a correlation between dewlap size and seasonality in mainland Anolis using traditional statistical methods and suggested that seasonally restricted breeding seasons enhanced the differentiation of this signaling trait. Here, we present two tests of the Fitch-Hillis Hypothesis using new phylogenetic and morphological data sets for 44 species of Mexican Anolis. A significant relationship between dewlap size and seasonality is evident in phylogenetically uncorrected analyses but erodes once phylogeny is accounted for. This loss of strong statistical support for a relationship between a key aspect of dewlap morphology and seasonality also occurs within a species complex (A. sericeus group) that inhabits seasonal and aseasonal environments. Our results fail to support seasonality as a strong driver of evolution of Anolis dewlap size. We discuss the implications of our results and the difficulty of disentangling the strength of single mechanisms on trait evolution when multiple selection pressures are likely at play.

9.
Syst Biol ; 69(1): 184-193, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31180508

RESUMO

Many recent species delimitation studies rely exclusively on limited analyses of genetic data analyzed under the multispecies coalescent (MSC) model, and results from these studies often are regarded as conclusive support for taxonomic changes. However, most MSC-based species delimitation methods have well-known and often unmet assumptions. Uncritical application of these genetic-based approaches (without due consideration of sampling design, the effects of a priori group designations, isolation by distance, cytoplasmic-nuclear mismatch, and population structure) can lead to over-splitting of species. Here, we argue that in many common biological scenarios, researchers must be particularly cautious regarding these limitations, especially in cases of well-studied, geographically variable, and parapatrically distributed species complexes. We consider these points with respect to a historically controversial species group, the American milksnakes (Lampropeltis triangulum complex), using genetic data from a recent analysis (Ruane et al. 2014). We show that over-reliance on the program Bayesian Phylogenetics and Phylogeography, without adequate consideration of its assumptions and of sampling limitations, resulted in over-splitting of species in this study. Several of the hypothesized species of milksnakes instead appear to represent arbitrary slices of continuous geographic clines. We conclude that the best available evidence supports three, rather than seven, species within this complex. More generally, we recommend that coalescent-based species delimitation studies incorporate thorough analyses of geographic variation and carefully examine putative contact zones among delimited species before making taxonomic changes.


Assuntos
Classificação/métodos , Filogeografia , Animais , Filogenia , Serpentes/classificação , Serpentes/genética
10.
Proc Natl Acad Sci U S A ; 116(9): 3646-3655, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808754

RESUMO

Viviparous (live-bearing) vertebrates have evolved repeatedly within otherwise oviparous (egg-laying) clades. Over two-thirds of these changes in vertebrate reproductive parity mode happened in squamate reptiles, where the transition has happened between 98 and 129 times. The transition from oviparity to viviparity requires numerous physiological, morphological, and immunological changes to the female reproductive tract, including eggshell reduction, delayed oviposition, placental development for supply of water and nutrition to the embryo by the mother, enhanced gas exchange, and suppression of maternal immune rejection of the embryo. We performed genomic and transcriptomic analyses of a closely related oviparous-viviparous pair of lizards (Phrynocephalus przewalskii and Phrynocephalus vlangalii) to examine these transitions. Expression patterns of maternal oviduct through reproductive development of the egg and embryo differ markedly between the two species. We found changes in expression patterns of appropriate genes that account for each of the major aspects of the oviparity to viviparity transition. In addition, we compared the gene sequences in transcriptomes of four oviparous-viviparous pairs of lizards in different genera (Phrynocephalus, Eremias, Scincella, and Sphenomorphus) to look for possible gene convergence at the sequence level. We discovered low levels of convergence in both amino acid replacement and evolutionary rate shift. This suggests that most of the changes that produce the oviparity-viviparity transition are changes in gene expression, so occasional reversals to oviparity from viviparity may not be as difficult to achieve as has been previously suggested.


Assuntos
Evolução Molecular , Oviparidade/genética , Transcriptoma/genética , Viviparidade não Mamífera/genética , Animais , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genômica , Lagartos/genética , Lagartos/crescimento & desenvolvimento , Filogenia , Placentação/genética , Gravidez , Reprodução/genética , Serpentes/genética , Serpentes/crescimento & desenvolvimento
11.
Proc Natl Acad Sci U S A ; 116(7): 2624-2633, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30642970

RESUMO

Groundwater-dependent species are among the least-known components of global biodiversity, as well as some of the most vulnerable because of rapid groundwater depletion at regional and global scales. The karstic Edwards-Trinity aquifer system of west-central Texas is one of the most species-rich groundwater systems in the world, represented by dozens of endemic groundwater-obligate species with narrow, naturally fragmented distributions. Here, we examine how geomorphological and hydrogeological processes have driven population divergence and speciation in a radiation of salamanders (Eurycea) endemic to the Edwards-Trinity system using phylogenetic and population genetic analysis of genome-wide DNA sequence data. Results revealed complex patterns of isolation and reconnection driven by surface and subsurface hydrology, resulting in both adaptive and nonadaptive population divergence and speciation. Our results uncover cryptic species diversity and refine the borders of several threatened and endangered species. The US Endangered Species Act has been used to bring state regulation to unrestricted groundwater withdrawals in the Edwards (Balcones Fault Zone) Aquifer, where listed species are found. However, the Trinity and Edwards-Trinity (Plateau) aquifers harbor additional species with similarly small ranges that currently receive no protection from regulatory programs designed to prevent groundwater depletion. Based on regional climate models that predict increased air temperature, together with hydrologic models that project decreased springflow, we conclude that Edwards-Trinity salamanders and other codistributed groundwater-dependent organisms are highly vulnerable to extinction within the next century.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Ecossistema , Espécies em Perigo de Extinção , Água Subterrânea , Urodelos/classificação , Animais , Monitoramento Ambiental/métodos , Hidrologia , Filogenia , Texas
12.
Natl Sci Rev ; 6(4): 739-745, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34691929

RESUMO

The exchange of biotas between Eurasia and North America across the Bering land bridge had a major impact on ecosystems of both continents throughout the Cenozoic. This exchange has received particular attention regarding placental mammals dispersing into the Americas, including humans after the last glacial period, and also as an explanation for the disjunct distribution of related seed plants in eastern Asia and eastern North America. Here, we investigate bi-directional dispersal across the Bering land bridge from estimates of dispersal events based on time-calibrated phylogenies of a broad range of plant, fungus and animal taxa. We reveal a long-lasting phase of asymmetrical biotic interchange, with a peak of dispersal from Asia into North America during the late Oligocene warming (26-24 Ma), when dispersal in the opposite direction was greatly decreased. Influx from North America into Asia was lower than in the opposite direction throughout the Cenozoic, but with peak rates of dispersal at the end of the Eocene (40-34 Ma) and again in the early to middle Miocene (16-14 Ma). The strong association between dispersal patterns and environmental changes suggests that plants, fungi and animals have likely dispersed from stable to perturbed environments of North America and Eurasia throughout the Cenozoic.

13.
Proc Natl Acad Sci U S A ; 115(45): E10634-E10641, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348757

RESUMO

Although many cases of genetic adaptations to high elevations have been reported, the processes driving these modifications and the pace of their evolution remain unclear. Many high-elevation adaptations (HEAs) are thought to have arisen in situ as populations rose with growing mountains. In contrast, most high-elevation lineages of the Qinghai-Tibetan Plateau appear to have colonized from low-elevation areas. These lineages provide an opportunity for studying recent HEAs and comparing them with ancestral low-elevation alternatives. Herein, we compare four frogs (three species of Nanorana and a close lowland relative) and four lizards (Phrynocephalus) that inhabit a range of elevations on or along the slopes of the Qinghai-Tibetan Plateau. The sequential cladogenesis of these species across an elevational gradient allows us to examine the gradual accumulation of HEA at increasing elevations. Many adaptations to high elevations appear to arise gradually and evolve continuously with increasing elevational distributions. Numerous related functions, especially DNA repair and energy metabolism pathways, exhibit rapid change and continuous positive selection with increasing elevations. Although the two studied genera are distantly related, they exhibit numerous convergent evolutionary changes, especially at the functional level. This functional convergence appears to be more extensive than convergence at the individual gene level, although we found 32 homologous genes undergoing positive selection for change in both high-elevation groups. We argue that species groups distributed along a broad elevational gradient provide a more powerful system for testing adaptations to high-elevation environments compared with studies that compare only pairs of high-elevation versus low-elevation species.


Assuntos
Adaptação Fisiológica , Altitude , Evolução Molecular , Animais , Sequenciamento de Nucleotídeos em Larga Escala , Lagartos/genética , Lagartos/fisiologia , Ranidae/genética , Ranidae/fisiologia , Análise de Sequência de RNA , Especificidade da Espécie , Tibet
14.
Proc Natl Acad Sci U S A ; 115(33): 8406-8411, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30065117

RESUMO

Several previous genomic studies have focused on adaptation to high elevations, but these investigations have been largely limited to endotherms. Snakes of the genus Thermophis are endemic to the Tibetan plateau and therefore present an opportunity to study high-elevation adaptations in ectotherms. Here, we report the de novo assembly of the genome of a Tibetan hot-spring snake (Thermophis baileyi) and then compare its genome to the genomes of the other two species of Thermophis, as well as to the genomes of two related species of snakes that occur at lower elevations. We identify 308 putative genes that appear to be under positive selection in Thermophis We also identified genes with shared amino acid replacements in the high-elevation hot-spring snakes compared with snakes and lizards that live at low elevations, including the genes for proteins involved in DNA damage repair (FEN1) and response to hypoxia (EPAS1). Functional assays of the FEN1 alleles reveal that the Thermophis allele is more stable under UV radiation than is the ancestral allele found in low-elevation lizards and snakes. Functional assays of EPAS1 alleles suggest that the Thermophis protein has lower transactivation activity than the low-elevation forms. Our analysis identifies some convergent genetic mechanisms in high-elevation adaptation between endotherms (based on studies of mammals) and ectotherms (based on our studies of Thermophis).


Assuntos
Aclimatação/fisiologia , Altitude , Serpentes/genética , Alelos , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Evolução Molecular , Feminino , Endonucleases Flap/genética , Genoma , Hipóxia , Filogenia , Seleção Genética , Serpentes/fisiologia , Tibet , Raios Ultravioleta
15.
Proc Natl Acad Sci U S A ; 114(29): E5864-E5870, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28673970

RESUMO

Frogs (Anura) are one of the most diverse groups of vertebrates and comprise nearly 90% of living amphibian species. Their worldwide distribution and diverse biology make them well-suited for assessing fundamental questions in evolution, ecology, and conservation. However, despite their scientific importance, the evolutionary history and tempo of frog diversification remain poorly understood. By using a molecular dataset of unprecedented size, including 88-kb characters from 95 nuclear genes of 156 frog species, in conjunction with 20 fossil-based calibrations, our analyses result in the most strongly supported phylogeny of all major frog lineages and provide a timescale of frog evolution that suggests much younger divergence times than suggested by earlier studies. Unexpectedly, our divergence-time analyses show that three species-rich clades (Hyloidea, Microhylidae, and Natatanura), which together comprise ∼88% of extant anuran species, simultaneously underwent rapid diversification at the Cretaceous-Paleogene (K-Pg) boundary (KPB). Moreover, anuran families and subfamilies containing arboreal species originated near or after the KPB. These results suggest that the K-Pg mass extinction may have triggered explosive radiations of frogs by creating new ecological opportunities. This phylogeny also reveals relationships such as Microhylidae being sister to all other ranoid frogs and African continental lineages of Natatanura forming a clade that is sister to a clade of Eurasian, Indian, Melanesian, and Malagasy lineages. Biogeographical analyses suggest that the ancestral area of modern frogs was Africa, and their current distribution is largely associated with the breakup of Pangaea and subsequent Gondwanan fragmentation.


Assuntos
Anuros/fisiologia , Filogenia , Proteínas de Anfíbios/genética , Animais , Anuros/genética , Evolução Biológica , Extinção Biológica , Fósseis , Filogeografia , Ranidae/genética , Ranidae/fisiologia
16.
Sci Rep ; 6: 35175, 2016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27756915

RESUMO

The Rhyparochromidae, the largest family of Lygaeoidea, encompasses more than 1,850 described species, but no mitochondrial genome has been sequenced to date. Here we describe the first mitochondrial genome for Rhyparochromidae: a complete mitochondrial genome of Panaorus albomaculatus (Scott, 1874). This mitochondrial genome is comprised of 16,345 bp, and contains the expected 37 genes and control region. The majority of the control region is made up of a large tandem-repeat region, which has a novel pattern not previously observed in other insects. The tandem-repeats region of P. albomaculatus consists of 53 tandem duplications (including one partial repeat), which is the largest number of tandem repeats among all the known insect mitochondrial genomes. Slipped-strand mispairing during replication is likely to have generated this novel pattern of tandem repeats. Comparative analysis of tRNA gene families in sequenced Pentatomomorpha and Lygaeoidea species shows that the pattern of nucleotide conservation is markedly higher on the J-strand. Phylogenetic reconstruction based on mitochondrial genomes suggests that Rhyparochromidae is not the sister group to all the remaining Lygaeoidea, and supports the monophyly of Lygaeoidea.


Assuntos
Genoma de Inseto/genética , Genoma Mitocondrial/genética , Heterópteros/genética , Sequências de Repetição em Tandem/genética , Animais , Composição de Bases/genética , Sequência de Bases/genética , RNA de Transferência/genética , Análise de Sequência de DNA
17.
Syst Biol ; 65(5): 824-42, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27288482

RESUMO

True frogs of the genus Rana are widely used as model organisms in studies of development, genetics, physiology, ecology, behavior, and evolution. Comparative studies among the more than 100 species of Rana rely on an understanding of the evolutionary history and patterns of diversification of the group. We estimate a well-resolved, time-calibrated phylogeny from sequences of six nuclear and three mitochondrial loci sampled from most species of Rana, and use that phylogeny to clarify the group's diversification and global biogeography. Our analyses consistently support an "Out of Asia" pattern with two independent dispersals of Rana from East Asia to North America via Beringian land bridges. The more species-rich lineage of New World Rana appears to have experienced a rapid radiation following its colonization of the New World, especially with its expansion into montane and tropical areas of Mexico, Central America, and South America. In contrast, Old World Rana exhibit different trajectories of diversification; diversification in the Old World began very slowly and later underwent a distinct increase in speciation rate around 29-18 Ma. Net diversification is associated with environmental changes and especially intensive tectonic movements along the Asian margin from the Oligocene to early Miocene. Our phylogeny further suggests that previous classifications were misled by morphological homoplasy and plesiomorphic color patterns, as well as a reliance primarily on mitochondrial genes. We provide a phylogenetic taxonomy based on analyses of multiple nuclear and mitochondrial gene loci. [Amphibians; biogeography; diversification rate; Holarctic; transcontinental dispersal.


Assuntos
Filogenia , Ranidae/classificação , América , Animais , Ásia , Teorema de Bayes , Ásia Oriental , Ranidae/genética , Análise de Sequência de DNA
18.
Trends Ecol Evol ; 31(2): 127-135, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26746806

RESUMO

We examine the complex evolution of animal nervous systems and discuss the ramifications of this complexity for inferring the nature of early animals. Although reconstructing the origins of nervous systems remains a central challenge in biology, and the phenotypic complexity of early animals remains controversial, a compelling picture is emerging. We now know that the nervous system and other key animal innovations contain a large degree of homoplasy, at least on the molecular level. Conflicting hypotheses about early nervous system evolution are due primarily to differences in the interpretation of this homoplasy. We highlight the need for explicit discussion of assumptions and discuss the limitations of current approaches for inferring ancient phenotypic states.


Assuntos
Biodiversidade , Evolução Biológica , Sistema Nervoso/anatomia & histologia , Animais , Regulação da Expressão Gênica , Humanos
19.
Syst Biol ; 65(4): 602-11, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26715586

RESUMO

The Mk model was developed for estimating phylogenetic trees from discrete morphological data, whether for living or fossil taxa. Like any model, the Mk model makes a number of assumptions. One assumption is that transitions between character states are symmetric (i.e., the probability of changing from 0 to 1 is the same as 1 to 0). However, some characters in a data matrix may not satisfy this assumption. Here, we test methods for relaxing this assumption in a Bayesian context. Using empirical data sets, we perform model fitting to illustrate cases in which modeling asymmetric transition rates among characters is preferable to the standard Mk model. We use simulated data sets to demonstrate that choosing the best-fit model of transition-state symmetry can improve model fit and phylogenetic estimation.


Assuntos
Classificação/métodos , Modelos Biológicos , Filogenia , Teorema de Bayes , Fósseis , Probabilidade
20.
J Exp Zool B Mol Dev Evol ; 324(6): 504-16, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26227660

RESUMO

Changes in parity mode between egg-laying (oviparity) and live-bearing (viviparity) have occurred repeatedly throughout vertebrate evolution. Oviparity is the ancestral amniote state, and viviparity has evolved many times independently within amniotes (especially in lizards and snakes), with possibly a few reversions to oviparity. In amniotes, the shelled egg is considered a complex structure that is unlikely to re-evolve if lost (i.e., it is an example of Dollo's Principle). However, a recent ancestral state reconstruction analysis concluded that viviparity was the ancestral state of squamate reptiles (lizards and snakes), and that oviparity re-evolved from viviparity many times throughout the evolutionary history of squamates. Here, we re-evaluate support for this provocative conclusion by testing the sensitivity of the analysis to model assumptions and estimates of squamate phylogeny. We found that the models and methods used for parity mode reconstruction are highly sensitive to the specific estimate of phylogeny used, and that the point estimate of phylogeny used to suggest that viviparity is the root state of the squamate tree is far from an optimal phylogenetic solution. The ancestral state reconstructions are also highly sensitive to model choice and specific values of model parameters. A method that is designed to account for biases in taxon sampling actually accentuates, rather than lessens, those biases with respect to ancestral state reconstructions. In contrast to recent conclusions from the same data set, we find that ancestral state reconstruction analyses provide highly equivocal support for the number and direction of transitions between oviparity and viviparity in squamates. Moreover, the reconstructions of ancestral parity state are highly dependent on the assumptions of each model. We conclude that the common ancestor of squamates was oviparous, and subsequent evolutionary transitions to viviparity were common, but reversals to oviparity were rare. The three putative reversals to oviparity with the strongest phylogenetic support occurred in the snakes Eryx jayakari and Lachesis, and the lizard, Liolaemus calchaqui. Our results emphasize that because the conclusions of ancestral state reconstruction studies are often highly sensitive to the methods and assumptions of analysis, researchers should carefully consider this sensitivity when evaluating alternative hypotheses of character-state evolution.


Assuntos
Evolução Biológica , Lagartos/classificação , Serpentes/classificação , Animais , Feminino , Oviparidade , Filogenia , Viviparidade não Mamífera
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...